High-dimensional knockoffs inference for time series data
Prof. Yingying Fan
Associate Dean for the PhD Program
Professor of Data Sciences and Operations
Marshall School of Business | University of Southern California
We make some initial attempts to establish the theoretical and methodological foundation for the model-X knockoffs inference for time series data. We suggest the method of time series knockoffs inference (TSKI) by exploiting the ideas of subsampling and e-values to address the difficulty caused by the serial dependence. We also generalize the robust knockoffs inference in \cite{barber2018robust} to the timeseries setting and relax the assumption of known covariate distribution required by model-X knockoffs, since such an assumption is overly stringent for time series data. We establish sufficient conditions under which TSKI achieves the asymptotic false discovery rate (FDR) control. Our technical analysis reveals the effects of serial dependence and unknown covariate distribution on the FDR control. We conduct a power analysis of TSKI using the Lasso coefficient difference knockoff statistic under the generalized linear time series models. The finite-sample performance of TSKI is illustrated with several simulation examples and an economic inflation study.