ItemRAG实现电商智能客服快速运营与精准推理 ItemRAG : Rapid Knowledge Updating and Precise Information Fetching for E-commerce Customer Service
徐常亮博士
牧语工场创始人 / 国科大杭高院研究员
Dr. Xu Changliang
Founder of MuyuWorks
Research Fellow
Hangzhou Institute for Advanced Study
University of Chinese Academy of Sciences (HIAS, UCAS)
ItemRAG采用检索增强生成技术,结合商品知识图谱,旨在为客户提供准确且及时的信息反馈。ItemRAG 通过动态更新知识库中的数据,增强了客服机器人的上下文理解和问题解答能力。系统设计考虑了信息检索的效率、知识表示的准确性以及语境理解的连贯性,从而显著提升了用户体验,降低了运营成本。
ItemRAG is designed to streamline e-commerce customer service through rapid operations and precise inference. Leveraging retrieval-augmented generation (RAG) and knowledge graphs, it automates responses, locates relevant information quickly, and updates its knowledge in real-time. Key features include dynamic knowledge updating, contextual understanding, and scalability. ItemRAG enhances customer satisfaction by reducing response times and improving accuracy, while also increasing cost efficiency for businesses.