Uniform Inference for High-Frequency Data
Mr. Qiyuan LI
Ph.D. Candidate in Economics
School of Economics
Singapore Management University
We address the uniform inference problem for high-frequency data that includes prices, volumes, and trading flows. Such data is modeled with a general state-space framework, where latent state process is the corresponding risk indicators, e.g., volatility, price jump, average order size, and arrival of events. The functional estimators are formed as the collection of localized estimates across different time points. Although the proposed estimators do not admit a functional central limit theorem, a Gaussian strong approximation, or coupling, is established under in-fill asymptotics to facilitate feasible inference. We apply the proposed methodology to distinguish the informative part from the Federal Open Market Committee speeches, and to analyze the impact of social media activities on cryptocurrency markets.