Xi LI
Prof. Xi LI
创新及资讯管理学
市场学
Professor
Director, Asia Case Research Centre
Associate Director, Institute of Digital Economy and Innovation

3917 7271

KK 836

Academic & Professional Qualification
  • Ph.D., University of Toronto
  • M.Phil., HKUST
  • B.E., Tsinghua University
Biography

Xi Li is a Professor of Marketing at the University of Hong Kong. He uses economics and machine learning methods to understand how information technologies such as artificial intelligence, recommender systems, data-driven algorithms, blockchain, and algorithmic pricing affect firms, consumers and the society, and how policymakers should regulate big data and protect consumer privacy.

Research Interest

Algorithms, big data and online marketplaces

Selected Publications
  • The Dark Side of Voluntary Data Sharing, (with Bingqing Li and Zhilin Yang), MIS Quarterly, forthcoming.
  • Endogenous Costs, Market Competition, and Disclosure, Marketing Science, forthcoming.
  • When Does It Pay to Invest in Pricing Algorithms, (with Xin Wang and Praveen K. Kopalle), Production and Operations Management, forthcoming.
  • Is Personalized Pricing Profitable When Firms Can Differentiate? (with Xin Wang and Barrie R. Nault), Management Science, 70(7):4184-4199, 2024.
  • The Bright Side of Inequity Aversion, (with Xinlong Li), Management Science, 69(7):4210-4227, 2023.
  • Channel Coordination of Storable Goods, (with Krista J. Li and Xiong Yan), Marketing Science, 42(3):538-550, 2023.
  • Advance Selling in Marketing Channels, (with Krista J. Li), Journal of Marketing Research, 60(2), 371–387, 2023.
  • Beating the Algorithm: Consumer Manipulation, Personalized Pricing, and Big Data Management, (with Krista J. Li), Manufacturing & Service Operations Management, 25(1), 36-49, 2023.
  • Superior Knowledge, Price Discrimination, and Customer Inspection, (with Zibin Xu), Marketing Science, 41(6), 1029- 1182, 2022.
  • Strategic Inventories Under Supply Chain Competition, (with Yanzhi Li and Ying-Ju Chen), Manufacturing & Service Operations Management, 24(1), 77-90, 2022.
  • Contract Unobservability and Downstream Competition, (with Qian Liu), Manufacturing & Service Operations Management, 23(6), 1468-1482, 2021.
  • Audio Mining: The Role of Vocal Tone in Persuasion, (with Xin Wang, Shijie Lu, Mansur Khamitov, and Neil Bendle), Journal of Consumer Research, 48(2), 189-211, 2021.
  • Reviewing Experts’ Restraint from Extremes and Its Impact on Service Providers, (with Peter Nguyen, Xin Wang and June Cotte), Journal of Consumer Research, 47(5), 654-674, 2021.
  • Transparency of Behavior-Based Pricing, (with Krista J. Li and Xin Wang), Journal of Marketing Research, 57(1), 78-99, 2020.
  • Video Mining: Measuring Visual Information Using Automatic Methods, (with Mengze Shi and Xin Wang), International Journal of Research in Marketing, 36(2), 216-231, 2019.
  • Managing Consumer Deliberations in a Decentralized Distribution Channel, (with Yanzhi Li and Mengze Shi), Marketing Science, 38(1), 170-190, 2019.
  • Product and Pricing Decisions in Crowdfunding, (with Ming Hu and Mengze Shi), Marketing Science, 34(3), 331-345, 2015.
Awards and Honours
  • 2021 MSI Young Scholar
Recent Publications
击败算法:消费者操纵、个性化定价和大数据管理

现代企业利用大数据技术收集消费者数据,并对消费者进行个性化定价。与此同时,消费者可以利用各种手段篡改数据来诓骗公司,以获取更优惠的价格。我们研究当消费者可以收集数据时企业应当如何收集消费者数据以及应否向消费者披露数据收集情况。研究考虑一个企业可以收集消费者数据以识别不同消费者的类型,并进行个性化定价,而消费者可以篡改数据。我们发现,当公司不向消费者披露数据收集范围时,它会收集更多消费者数据;当公司披露数据收集范围时,公司所收集的数据则会减少。消费者篡改数据可能对公司和消费者都不是一件好事。此外我们发现,公开数据收集范围可以增加公司利润、消费者盈余及社会福利。研究结果表明,公司应根据消费者操纵数据的成本和需求异质性,来调整数据收集范围和价格。公共政策应要求公司披露其数据收集范围,以增加消费者剩余及社会福利。即使没有强制披露数据的政策,企业也应该自愿披露其数据收集范围以增加利润。此外,为消费者篡改数据提供便利最终可能会损害消费者和公司的利益。

以计算机科学的力量实现市场学数字化 – 李曦博士

香港大学的百年基业声威远播,再加上我们学院与亚太区的商业群体关系良好。在强强结合下,港大的市场学学者们在研究上将如虎添翼,并能更有效地把他们的研究和知识传授给学生,继而为社会培养更优秀的人才。

以计算机科学的力量实现市场学数字化 – 李曦博士

天生对周遭事物充满好奇的李曦博士,自幼对市场营销策略以及相关的经济现象深感兴趣。李博士非常欣赏港大经管学院卓越的研究水平,所以他最终在2021年7月以市场学副教授的身份加入我们港大经管学院的大家庭。