Asset Management and Private Banking – First Cohort Graduating

Asset Management and Private Banking – First Cohort Graduating

The Bachelor of Finance in Asset Management and Private Banking programme was founded in 2017, the first cohort of 23 students will be graduating, most of them this summer and a few (who have taken gap term) next semester/year.

Five of them have decided to pursue a Master degree joining King’s College London, Imperial London College, Carnegie Mellon University, Waseda University and the University of Hong Kong.   One student is returning to his home country in Europe.

Of the remaining 17 students, all of them have secured their graduate job or internship (for those who graduate next semester/year).  Six (35% out of the 17) of them are joining Private Banking/Retail Wealth Management, five (29%) of them are joining Investment Banks/Securities Firms, four (24%) of them are joining Asset Management, one (6%) of them is joining Consulting. Interestingly, one student (6%) decided to start his own “start-up”.

Asset Management and Private Banking First Cohort of 23 Students going into…

Recruiting firms include BNP Paribas, BOC International, Bretteville Consulting, China Asset Management, CCB International, Fidelity, Goldman Sachs, Guotai Junan International, HSBC, Julius Baer, Millennium Management, Pictet, Societe Generale, Standard Chartered and UBS.

Congratulations to the first graduating cohort and we look forward to your sharing with your junior AMPBers in the years to come.  Stay connected. CONGRATULATIONS!

Other Events
港大經管學院最新多模態AI圖像生成能力排名出爐 部份中國人工智能模型表現突出
2025 | 學院新聞
港大經管學院最新多模態AI圖像生成能力排名出爐 部份中國人工智能模型表現突出
港大經管學院今日發表《人工智能模型圖像生成能力綜合評測報告》,針對15個「文生圖模型」及7個「多模態大語言模型」進行全面評估。研究顯示,字節跳動的即夢AI和豆包,以及百度的文心一言,在新圖像生成的內容質素及圖像修改的表現突出;而早前引起全球關注的DeepSeek最新推出的文生圖模型Janus-Pro,則在新圖像生成方面表現欠佳。研究亦發現部分文生圖模型雖然在內容質素方面表現優異,卻在安全與責任方面的表現強差人意。整體而言,與文生圖模型相比,多模態大語言模型整體表現較佳。
人工智能圖像生成評測成績單公布: 字節跳動百度表現亮眼,DeepSeek Janus-Pro表現欠佳
2025 | 研究
人工智能圖像生成評測成績單公布: 字節跳動百度表現亮眼,DeepSeek Janus-Pro表現欠佳
如今,人工智能領域的前沿模型技術已經從文本處理拓展至視覺信息的深度理解與生成。這些模型既能精准解讀圖像語義,又能根據文字描述創作出兼具真實感與藝術性的視覺內容,展現出令人驚嘆的跨模態理解與創作能力。本研究聚焦全新圖像的生成和基于現有圖像的圖像修改兩大核心任務,提出了一套系統性的人工智能模型圖像生成能力評測框架。我們基于多維測試集的構建與專家評審,對15個專業文生圖模型和7個多模態大語言模型的圖像生成能力進行了全面評估。結果顯示,字節跳動的即夢AI和豆包以及百度的文心一言在新圖像生成的內容質量與修改任務中表現突出,位列第一梯隊。對比不同類型的AI模型,我們發現,相對于專業文生圖模型,多模態大語言模型整體表現更佳。