Hailiang Chen
Prof. Hailiang CHEN
創新及資訊管理學
Assistant Dean (Taught Postgraduate)
Professor in Innovation and Information Management

3917 0016

KK 840

Academic & Professional Qualification
  • PhD, Purdue University
  • MS, Purdue University
  • BM, Tsinghua University
Biography

Hailiang Chen is interested in the research areas of social media, fintech, artificial intelligence, business analytics, venture capital, entrepreneurship, mobile and social commerce, economics of information systems, and design science. His research has been published in elite business journals in information systems, finance, and management, including Information Systems Research (ISR), Journal of Financial Economics (JFE), Journal of Management Information Systems (JMIS), Management Science (MS), Review of Financial Studies (RFS), and Strategic Management Journal (SMJ). His research received media coverage in outlets such as Wall Street Journal, Forbes, New York Times, Reuters, Seeking Alpha, TechSpot, and so on.

Teaching
  • Business Analytics
  • Social Media
  • FinTech
  • Capstone Project
Selected Publications
  • Yu, Yinan, Liangfei Qiu, Hailiang Chen, Benjamin P. C. Yen. 2023. Movie Fit Uncertainty and Interplay between Traditional Advertising and Social Media Marketing. Marketing Letters 34(3) 429–448.
  • Xu, Ruiyun Rayna, Hailiang Chen, J. Leon Zhao. 2023. SocioLink: Leveraging Relational Information in Knowledge Graphs for Startup Recommendations. Journal of Management Information Systems 40(2) 655-682.
  • Chen, Hailiang, Yifan Dou, Yongbo Xiao. 2023. Understanding the Role of Live Streamers in Live-Streaming E-Commerce. Electronic Commerce Research and Applications 59, 101266.
  • Chen, Hailiang, Byoung-Hyoun Hwang. 2022. Listening in on Investors’ Thoughts and Conversations. Journal of Financial Economics 145(2) 426-444.
  • Yu, Yinan, Hailiang Chen, Chih-Hung Peng, Patrick Y.K. Chau. 2022. The Causal Effect of Subscription Video Streaming on DVD Sales: Evidence from a Natural Experiment. Decision Support Systems 157, 113767.
  • Clarke, Jonathan, Hailiang Chen, Ding Du, Yu Jeffrey Hu. 2021. Fake News, Investor Attention, and Market Reaction. Information Systems Research 32(1) 35-52.
  • Xie, Peng, Hailiang Chen, Yu Jeffrey Hu. 2020. Signal or Noise in Social Media Discussions: The Role of Network Cohesion in Predicting the Bitcoin Market. Journal of Management Information Systems 37(4) 933-956.
  • Chen, Hailiang, Yu Jeffrey Hu, Shan Huang. 2019. Monetary Incentive and Stock Opinions on Social Media. Journal of Management Information Systems 36(2) 391-417.
  • Chen, Hailiang, Yu Jeffrey Hu, Michael D. Smith. 2019. The Impact of E-book Distribution on Print Sales: Analysis of a Natural Experiment. Management Science 65(1) 19-31.
  • Akcura, Tolga, Kemal Altinkemer, Hailiang Chen. 2018. Noninfluentials and Information Dissemination in the Microblogging Community. Information Technology and Management 19(2) 89-106.
  • Lee, Joon Mahn, Byoung-Hyoun Hwang, Hailiang Chen. 2017. Are Founder CEOs more Overconfident than Professional CEOs? Evidence from S&P 1500 Companies. Strategic Management Journal 38(3) 751-769.
  • Chen, Hailiang, Prabuddha De, Yu Jeffrey Hu. 2015. IT-Enabled Broadcasting in Social Media: An Empirical Study of Artists’ Activities and Music Sales. Information Systems Research 26(3) 513-531.
  • Chen, Hailiang, Prabuddha De, Yu Jeffrey Hu, Byoung-Hyoun Hwang. 2014. Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media. Review of Financial Studies 27(5) 1367-1403.
  • Chen, Hailiang, Hongyan Liu, Jiawei Han, Xiaoxin Yin, Jun He. 2009. Exploring Optimization of Semantic Relationship Graph for Multi-relational Bayesian Classification. Decision Support Systems 48(1) 112-121.
Awards and Honours
  • Faculty Outstanding Researcher Award, Faculty of Business and Economics, The University of Hong Kong, 2022-23
  • INFORMS Information System Society (ISS) Sandra A. Slaughter Early Career Award, 2022
  • General Research Fund, Research Grants Council of Hong Kong, five consecutive years (2019, 2020, 2021, 2022, and 2023)
  • Essential Science Indicators’ (ESI) Highly Cited Paper (Top 1% in the field of Social Sciences, General), 2021
  • Association for Information Systems (AIS) Early Career Award, 2019
  • Essential Science Indicators’ (ESI) Highly Cited Paper (Top 1% in the field of Economics & Business), 2014
Service to the University / Community
  • Program Director, Master of Science in Business Analytics, HKU Business School, 2020-2023
  • Program Chair, International Conference on Smart Finance (ICSF), 2021 and 2022
  • Associate Editor, Journal of Management Information Systems (JMIS), Special Issue on Fake News, 2020
  • Associate Editor, MIS Quarterly, Special Issue on Managing AI, 2019
  • Associate Editor, Information Systems Research, Special Issue on FinTech, 2018
Recent Publications
從人工視窗到智慧問答:大語言模型與RAG技術重塑政務服務

近年,類似於ChatGPT的大語言模型(Large Language Model,LLM)在全球迅速普及,展示出巨大的應用潛力。 通過海量數據的訓練,這些模型能夠生成連貫且語義合理的文本,並具有卓越的問答能力。 在政務服務領域,公眾一般通過政府官網、移動應用查詢政策法規、辦事流程等資訊,或者前往政務服務大廳求助。 傳統的政務服務主要依賴人工視窗服務和電話諮詢,服務效率和回應速度往往受到限制,尤其是在遇到複雜問題或需要長時間排隊等待時,公眾滿意度往往較低。 隨著技術的發展,特別是大語言模型的出現,政務服務逐漸邁進智慧化、自動化。 結合大語言模型的對話式諮詢服務更為高效,能顯著提升公眾體驗。

傾聽投資者的想法與對話

神經科學和社會心理學的大量文獻指出,人類天生對別人如何看待自己很在意。在本文中,我們提出投資者的印象管理策略最終亦可以主導他們以口碑相傳方式所傳遞的內容,並可能不經意間造成噪聲的傳播。我們分析來自美國最大的投資相關網站之一的伺服器日誌檔數據,發現結果與我們的見解一致,即投資者會更積極地分享適用於印象管理的文章,即使這些文章不太準確地預測回報。其他分析亦指出,高層次的此類分享會導致定價過高。

「客流计租」,汇纳科技与实体商业数字化转型新法则

汇纳科技正在为整个实体商业构建一个新的基础坐标系。 对商业地产来说,数字化转型早已是大势所趋且探索已久,而今年的疫情黑天鹅更使这一进程加快了。 一直以来,数字化转型最大的难度就是思想意识上的改变,疫情改变了这一现状。数字化好处在于,企业在面临疫情影响的时候,业务波动性会比较低。 疫情期间对居民外出的限制,为实体渠道带来严重冲击。如果说此前的数字化转型对商业地产来说是锦上添花,那如今已是迫在眉睫。商业地产开始思索这场危机给行业带来的改变。

社交媒體討論中的信號或噪音:網絡凝聚力在預測比特幣市場中的作用

早期研究顯示,社交媒體上的討論有助於預測金融市場的價格走勢。隨著社交媒體數據量的不斷增加,如何有效地從海量的雜訊中抽取有價值而相關的資料,是一門重要的課題。我們透過研究比特幣市場,分析社交媒體的情緒與價格變化的關係以及網絡凝聚力在此關係中所起的作用。由於網絡凝聚力與討論網絡內的信息相關性相關,我們假設相對凝聚力較高的網絡,凝聚力較低的社交媒體討論網絡更能準確預測翌日的回報。我們使用從Bitcointalk.org收集到的數據,以迴歸分析及模擬交易的方法,印證了我們的假設。透過分析社交媒體在金融市場所扮演的角色,我們的研究豐富了相關的文獻,亦為根據社交媒體的信號作交易的投資者提供實用的見解。

The Impact of E-book Distribution on Print Sales: Analysis of a Natural Experiment

Digital distribution introduces many new strategic questions for the creative industries—notably, how the use of new digital channels will impact sales in established channels. We analyze this question in the context of e-book and hardcover sales by exploiting a natural experiment that exogenously delayed the release of a publisher’s new Kindle e-books in April and May 2010. Using new books released simultaneously in e-book and print formats in March and June 2010 as the control group, we find that delaying e-book availability results in a 43.8% decrease in e-book sales but no increase in print book sales on Amazon.com or among other online or offline retailers. We also find that the decrease in e-book sales is greater for books with less prerelease buzz. Together, we find no evidence of strong cannibalization between print books and e-books in the short term and no support for the sequential distribution of books in print versions followed by e-book versions.