
Firms and Industry Dynamics: Literature and Perspective

> Mark J. Roberts Pennsylvania State University and NBER

2023 Firm and Industry Dynamics Workshop Hong Kong University

ZVI GRILICHES, 1930-1999

(Highly) Selected Contributions of Zvi Griliches

- Production Function Estimation
 - Economies of Scale and the Form of the Production Function, with Vidar Ringstad (1971) – Norwegian establishment micro data.
 - Measurement error, unobserved heterogeneity, endogeneity
- R&D and Innovation
 - "Hybrid Corn: An Exploration in the Economics of Technological Change" (1957), Econometrica – Diffusion process for innovation
 - "Issues in Assessing the contribution of R&D to Productivity Growth," (1979) Bell Journal of Economics – Knowledge production function, spillovers
- Price Measurement
 - Hedonic Price Indices for Automobiles: An Econometric Analysis of Quality Change (1961), Price Statistics of the Federal Government, NBER – role of product characteristics

See Heckman (2005) – Nobel prize nominating statement for Griliches

Producer Heterogeneity at the Micro Level

Within-industry - enormous differences across plants and firms.

- Observable Characteristics
 - Size (revenue, capital, employment)
 - Age
 - Wages paid
 - Skill level of workforce
 - Management practices or organization
 - Number of products/markets
 - Investment in R&D
 - Advertising
- Unobserved (less) Characteristics
 - Productivity/tech efficiency
 - Product Quality
 - Customer Base
 - Output Quantity and Price

- Performance Outcomes
 - Profitability/ Firm Value
 - Survival
 - Growth rates
 - Innovation rates

A Theory of Firm Growth and Exit

- Theory of Firm Selection and Market Evolution, Jovanovic (1982)
 - Single industry firms are heterogenous in one dimension: ω_i
 - Firm is born with exogenous draw of ω_{i} , never changes
 - c_i is unknown to the firm observe a noisy signal $\Theta_{it} = \Theta(\omega_i + \varepsilon_t)$
 - Choose output based on $E(\Theta_{it})$ and update it based on observed profits
- Mechanism firm gradually learns ω_i , output level converges, and firm exits if expected future profits are too low.
- Predictions:
 - Probability of failure declines with firm size and age
 - Mean growth rate of survivors declines with size (given age)
 - Variance of survivor's growth rate declines with age

Plant Growth and Exit – Empirical Evidence

• Panel data of U.S. Manufacturing plants, 5-year intervals, 1963-1982

		T LAN	I GROWTH AND EXIT I					
	Size (number of employees)							
Age (years)	5–19	20-49	50-99	100-249	>250	Total		
a. Mean emplo	yment growth rate of s	uccessful plants						
1-5	0.606	0.299	0.187	0.132	0.067	0.446		
6-10	0.338	0.136	0.066	0.011	-0.011	0.202		
11-15	0.310	0.055	-0.006	-0.015	-0.018	0.153		
Total	0.519	0.226	0.130	0.077	0.026	0.353		
b. Plant exit ra	ates							
15	0.412	0.396	0.390	0.327	0.229	0.397		
6-10	0.347	0.268	0.281	0.245	0.158	0.303		
11-15	0.304	0.206	0.234	0.212	0.131	0.255		
Total	0.391	0.347	0.346	0.291	0.191	0.363		
c. Mean emplo	yment growth rate of a	ll plants						
1-5	-0.056	-0.216	-0.276	-0.238	-0.178	-0.129		
6-10	-0.127	-0.169	-0.234	-0.236	-0.167	-0.162		
11-15	-0.089	-0.163	-0.239	-0.224	-0.147	-0.141		
Total	-0.074	-0.199	-0.261	-0.236	-0.170	-0.138		
d. Number of	plant-year observations	s on successful plants/						
1-5	75,959/53,325	29,938/19,649	13,758/8,794	9,472/4,601	3,281/977	132,408/87,346		
6-10	27,409/14,569	15,268/5,584	7,577/2,961	5,829/1,889	2,630/494	58,713/25,947		
11-15	7,773/3,400	4,675/1,216	2,198/673	1,568/421	911/137	17,125/5,847		
Total	111,141/71,294	49,881/26,449	23,533/12,428	16,869/6,911	6,822/1,608	208,246/118,69		

TABLE I Plant Growth and Exit Rates

Industry Level Firm Turnover

Entry and exit are positively correlated across industries.

TABLE 7	Correlations	between Ind	ustry Entry	and Exit Va	ariables (38	7 Four-Digi	t Industries)		
	No Co	No Correction for Fixed Industry Effects				Correction for Fixed Industry Effects			
	1963-1967	1967–1972	1972–1977	1977-1982	1963-1967	1967–1972	1972–1977	1977-1982	
Entry Rate						Entry	Rate		
Exit Rate									
1963-1967	.180	.363	.387	.323	249	.071	.123	005	
1967-1972	.447	.274	.273	.363	.371	191	177	.118	
1972-1977	.358	.408	.321	.328	.051	.137	129	081	
1977-1982	.237	.324	.389	.304	114	029	.147	028	
		Entrant M	arket Share	Entrant Market Share					
Exiter Market Sha	ire								
1963-1967	.741	.725	.743	.691	.308	116	037	167	
1967-1972	.722	.770	.759	.703	.124	.154	058	228	
1972-1977	.681	.800	.788	.784	153	.160	044	.032	
1977-1982	.571	.691	.758	.804	287	172	.132	.354	

Source: Dunne, Roberts, and Samuelson (1988)

A Theory of Simultaneous Entry and Exit

"Entry, exit, and firm dynamics in long-run equilibrium," Hopenhayn (1992)

- Firms are heterogenous in one dimension, productivity ω_{it}
- Productivity is known but evolves stochastically
 - Markov process $F(\omega_{it+1} \mid \omega_{it})$ that is strictly decreasing in ω_{it}
- Entrants pay a sunk cost C_e observe ω_{it}
- Firms exit when ω_{it} < ω that guarantees positive firm value

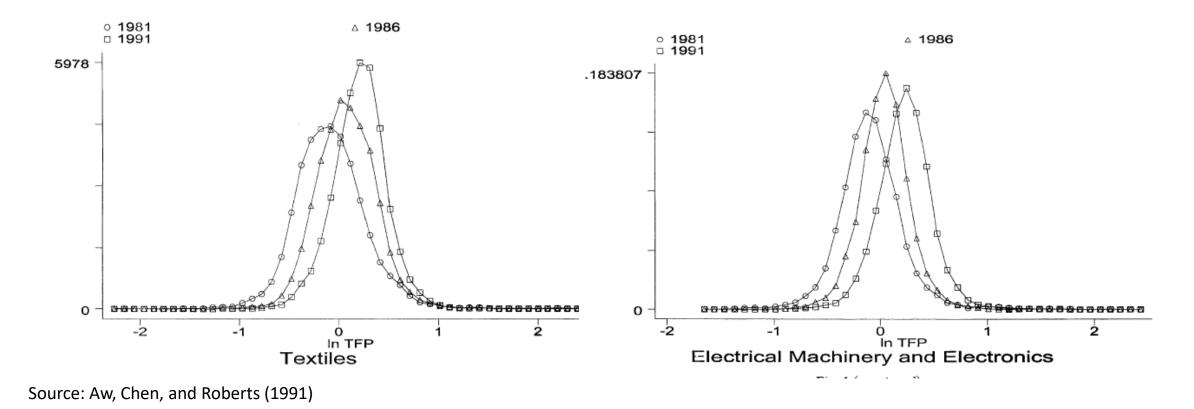
Implications:

- In equilibrium an industry has simultaneous entry and exit
- Magnitude of turnover is affected by C_e (technology)
- High C_e is a barrier to entry and exit. Inefficient firms can survive

Does Firm Turnover Improve Industry Productivity?

Compare productivity of entering, continuing, exiting firms.

Multilateral Tornqvist productivity index (Solow residual):


Bailey, Hulten, Campbell (1992), Griliches and Regev (1995), Haltiwanger (1997), Aw, Chen, and Roberts (2001)

$$\ln TFP_{ft} = (\ln Y_{ft} - \overline{\ln Y}) - \sum_{i} \frac{1}{2} (S_{ift} + \overline{S_i}) (\ln X_{ift} - \overline{\ln X_i})$$

Production function estimation: Olley and Pakes (1996)

$$\ln Y_{ft} = \alpha_0 + \sum_i \alpha_i \ln X_{ift} + \ln TFP_{ft} + \varepsilon_{ft}$$

Productivity Distributions – Taiwan 1981-91

How do firm movements contribute to the shift in the industry distribution?

Decompose Industry Productivity Growth

Industry Productivity: $\ln TFP_t = \sum_f \theta_{ft} \ln TFP_{ft}$

Firms are entering (E_{t+1}) , exiting (X_t) or continuing (C_{t+1}, C_t)

Industry Productivity Growth:

$$\ln TFP_{t+1} - \ln TFP_t = \frac{(\theta_{Xt} + \theta_{Et+1})}{2} (\ln TFP_{Et+1} - \ln TFP_{Xt})$$

$$\frac{(\ln TFP_{Xt} + \ln TFP_{Et+1})}{2} (\theta_{Et+1} - \theta_{Xt})$$

$$\sum_{f \in C} \frac{(\theta_{ft} + \theta_{ft+1})}{2} (\ln TFP_{ft+1} - \ln TFP_{ft})$$

$$\sum_{f \in C} \frac{(\ln TFP_{ft} + \ln TFP_{ft+1})}{2} (\theta_{ft+1} - \theta_{ft})$$
Continuing

TFP Decomposition - Taiwan Manufacturing Plants

Industry	Labor	TFP	Decomposition of TFP growth				
(years)	productivity growth	growth	Continuing firms	Entry vs. Exit	Market share reallocation		
Textiles							
1981-1986	0.514	0.165	0.096	0.075	-0.006		
1986-1991	0.437	0.152	0.091	0.052	0.010		
Clothing							
1981-1986	0.157	-0.032	-0.023	- 0.009	-0.000		
1986-1991	0.352	0.110	0.056	0.052	0.002		
Chemicals							
1981-1986	0.515	0.264	0.171	0.093	0.000		
1986-1991	0.194	0.122	0.059	0.057	0.007		
Plastics							
1981-1986	0.268	0.120	0.071	0.044	0.005		
1986-1991	0.420	0.118	0.080	0.033	0.005		
Basic metals							
1981-1986	0.369	0.121	0.087	0.041	-0.008		
1986-1991	0.299	0.164	0.127	0.032	0.005		
Fabricated me	etals						
1981-1986	0.266	0.021	-0.008	0.028	0.001		
1986-1991	0.371	0.083	0.042	0.042	-0.001		
Non-electrical	machinery						
1981-1986	0.220	0.036	0.027	0.005	0.004		
1986-1991	0.404	0.048	0.028	0.014	0.007		
Electrical mac	chinery						
1981-1986	0.368	0.053	0.028	0.041	-0.017		
1986-1991	0.743	0.293	0.180	0.105	0.008		
Transportation	n equipment						
1981-1986	-0.047	-0.133	-0.074	-0.048	-0.011		
1986-1991	0.468	0.094	0.066	0.014	0.014		

TFP Growth Source - U.S. Manufacturing Industries

Table 1. Decomposition of TFP Growth, Selected Periods

Percentage increase over the period

Category	Total	Fixed shares	Share effect	Entry and exit
1972-77	****			
All industries	7.17	5.04	2.12	0.01
Except 3573	4.62	2.80	1.92	-0.09
Except 3573 and 3711	0.89	-0.86	1.84	-0.09
1977-82				
All industries	2.39	- 1.09	2.53	0.95
Except 3573	-3.18	-6.08	2.49	0.41
Except 3573 and 3711	-4.80	-8.79	3.41	0.59
1982-87				
All	15.63	13.52	3.15	-1.05
Except 3573	8.98	7.16	2.82	-1.00
Except 3573 and 3711	9.30	7.59	2.60	-0.89

Source: Authors' calculations.

Source: Bailey, Hulten, and Campbell (1982)

Multiple Sources of Firm Heterogeneity

- Single proxy for unobserved heterogeneity in profits
 - Revenue TFPR = $\frac{P_i q_i}{x_i}$ where $P_i q_i$ is deflated by aggregate price index.
 - Substantial differences across firms.
 - Very persistent over time at firm level.
 - Positively correlated with survival
- Multiple factors can contribute to persistent differences across firms
 - Cost-side factors
 - Input prices (materials deflated by industry deflator)
 - Technical efficiency TFPQ = $\frac{q_i}{r}$
 - Demand-side factors
 - Product Quality or appeal
 - Different demand elasticities
 - Imperfect Competition markups

All impact firm price P_i

Interpreting TFPR – Katayama, Lu, Tybout (2009)

Production Function: $\ln Y_{ft} = e^{\omega_{ft}} h(X_{ft})$

$$TFPQ_{ft} = \omega_{ft} = \ln Y_{ft} - \ln h(X_{ft})$$

Output is replaced with revenue deflated with industry price index Inputs are replaced with expenditures deflated by an price index

$$\begin{array}{lll} TFPR_{ft} &=& \ln(R_{ft} - \ln \bar{P}_t) - \ln h(X_{ft}) \\ & \\ \tilde{X}_{ft} &=& \frac{W_{ft}}{\bar{W}_t} X_{ft} \end{array}$$

Assume demand for each product depends on all product prices and quality index for each product δ_{it} and Bertrand competition

Interpreting TFPR – Katayama, Lu, Tybout (2009)

$$TFPR_{ft} = \ln\left[\frac{X_{ft}}{\tilde{P}_{t}}\right] + \ln\left[\frac{\eta_{ft}}{\gamma_{ft}(\eta_{ft}-1)}\right] + \ln\left[\frac{W_{ft}}{\bar{P}_{t}}\right]$$

TEDO	Scale economies	Factor
TFPQ	and markups	prices

- High factor prices can be passed through to output price and TFPR
- High markups do the same, inelastic demand raises TFPR
- High product appeal δ_{it} can create inelastic demand
- Rich empirical model (Colombian data) nested logit demand and cost function
 - MC is negatively correlated with TFPR because of high markups
 - TFPR has very low correlation with demand/quality factors.

Empirical Studies – TFPQ vs TFPR

- Foster, Haltiwanger, and Syverson (AER, 2008)
 - Use U.S. manufacturing plants in 11 homogenous goods industries
 - Can measure physical Y_{ft} and construct output prices as $P_{ft} = R_{ft} / Y_{ft}$
 - Findings:
 - Corr(TFPQ,TFPR)=0.75, Corr(TFPQ,P)=-0.54, Corr(TFPR,P)=0.16
 - Higher TFPQ plants (lower MC) have lower prices.
 - Add a demand model-

$$\ln Y_{ft} = \alpha_0 + \alpha_1 \ln P_{ft} + \alpha_t + \delta_{ft}$$

- Findings:
 - Corr(TFPR, δ)=0.28, Corr(TFPQ, δ)=0.01
 - High persistence over time in all measures
 - All measures are negatively correlated with exit
 - Heterogeneity in demand shock is more important than heterogeneity in TFPQ
 - Productivity decomposition: TFPR underestimates contribution of net entry (entrants have low prices)

Empirical Studies – Efficiency or Demand

- Pozzi and Schivardi (Rand, 2016)
 - Data on output price for Italian manufacturing firms in three industries
 - Add CES demand (constant markup) and monopolistic competition.
 - Profit max predicts Y increase with ω and $\delta,$ P rises with δ and falls with ω

	Outpu	t Sold	Price	Output Produced	
	(1) Revenues			(4) Value	(5) Quantity
ΔTFP	0.66*** (0.019)	0.82*** (0.024)	-0.17^{***} (0.005)	0.85*** (0.024)	1.03*** (0.023)
$\Delta \xi$	0.44*** (0.007)	0.29*** (0.008)	0.13*** (0.002)	0.37*** (0.006)	0.24*** (0.007)
Observations R^2	6566 0.70	6566 0.50	6555 0.76	6587 0.61	6543 0.53

TABLE 5	Quantity Sold and Output Growth
---------	---------------------------------

- Revenue is more responsive to demand, less responsive to productivity than quantity (price effect)
- Demand shocks are more important than productivity shocks in explaining firm size.

Empirical Studies – Efficiency, Demand, Wedges

- Eslava, Haltiwanger and Urdaneta (Restud, 2023)
 - (Related to Hsieh and Klenow (2009) and Hottman, Redding, Weistein (2016)
- Exploit plant data that includes *input and output prices and quantities*
- Across plants differences in size can arise from:
 - Output quality differences
 - Markups (Cournot competition)
 - Marginal cost technical efficiency (TFPQ) and quality differences in input
 - Residual deviations between theory-predicted size and observed size.
- Theory: Derive optimal plant sales with CD production, CES demand, Cournot competition.
- Empirical: Estimate production and demand allowing plant-level variation in ω and δ

Empirical Studies – Efficiency, Demand, Wedges

	1	Levels decomposition			Growth decomposition				
	Weighted				Weighted				
	avg. ages	Age 3	Age 10	Age 20	avg. ages	Age 3	Age 10	Age 20	
		Р	anel A: Un	weighted					
TFPQ-HK	1.139	1.184	1.148	1.129	1.216	1.317	1.247	1.194	
TFPQ	0.081	0.131	0.087	0.074	0.142	0.252	0.152	0.112	
Demand	1.058	1.053	1.061	1.055	1.074	1.065	1.095	1.082	
Composite (HK) wedge	-0.139	-0.184	-0.148	-0.129	-0.216	-0.317	-0.247	-0.194	
Material prices	0.003	0.009	0.001	0.005	-0.005	-0.011	-0.009	-0.005	
Wages	-0.073	-0.072	-0.069	-0.078	-0.046	-0.053	-0.056	-0.047	
Markup	-0.019	-0.011	-0.014	-0.018	-0.009	-0.006	-0.006	-0.008	
Residual wedge	-0.049	-0.110	-0.066	-0.038	-0.156	-0.248	-0.175	-0.134	
Marginal cost HRW	-0.039	-0.042	-0.047	-0.037	-0.065	-0.059	-0.088	-0.074	

TABLE 3 Variance decomposition of sales

....

Contribution to the Var(log sales): TFPQ and Demand have positive contribution. Demand is largest. Wages, markup, residual make negative contribution to size dispersion

Entry Decision

- Efficiency, demand, markups affect firm size, growth, and exit.
- Entry costs are another source of unobserved heterogeneity
- Industry Level Hopenhayn (1992), high entry costs are a barrier to entry and exit and allow inefficient firms to survive.
- Firm Level entry costs create hysteresis in firm entry and exit. Entrant faces a sunk entry cost CE_i. E(V_i) is expected firm value if in Incumbent faces a fixed cost CF_i < CE_i

New firms enters if $E(V_i) > CE_i$ but Incumbent remains in if $E(V_i) > CF_i$

• Implication – Entry and fixed costs impact firm and industry dynamics

Empirical Models of Entry – Estimate Sunk Costs

- Dynamic oligopoly game E(V_i) depends on number of firms
 - Collard-Wexler (Econometrica, 2013) concrete plants
 - Ryan (Econometrica, 2912) cement plants
 - Aguirregabiria and Mira (Econometrica, 2007) retail establishments
 - Dunne, Klimek, Roberts, and Xu (Rand, 2013) dentists and chiropractors
- Entry into Exporting Single agent decision
 - Das, Roberts and Tybout (Econometrica, 2007)
 - Alessandria, Arkolakis and Ruhl (2021) review article
- Investment in R&D Single agent decision
 - Aw, Roberts, and Xu (AER, 2011)
 - Peters, Roberts, Vuong, Fryges (Rand, 2017)
 - Maican, Orth, Roberts, Vuong (JEEA, 2023)

Combining Demand, Cost, Entry Heterogeneity

- Roberts, Xu, Fan, Zhang (Restud, 2018)
- Model of firm export demand, pricing, and destination markets
- Chinese footwear producers 2002-2006.
- Firm price and quantity of exports by destination market
- Empirical Model
 - Demand equation depends on unobserved firm quality ξ_f
 - Pricing equation depends on unobserved firm cost efficiency c_f
 - Market participation equation depends on unobserved firm fixed cost η_f

Empirical Model of Export Participation

- *f firm, d destination region (7) , k product (textile, rubber,leather)*
- Demand market share

$$ln(s_{kf}^{dt}) \equiv ln(\tilde{s}_{kf}^{dt}) - ln(s_0^{dt}) = \xi_f + \xi_k - \alpha_d \ln p_{kf}^{dt} + \tau_{dt} + u_{kf}^{dt},$$

• Pricing
$$\ln p_{kf}^{dt} = \gamma_{dt} + \gamma_k + \gamma_w \ln w_f^t + c_f + v_{kf}^{dt}$$
,

• Destination Profit
$$\ln \pi^{dt}(\xi_f, c_f; w_f^t, K_f) = \ln \left[\frac{1}{\alpha_d}\right] + \ln \Omega^{dt} + \ln \left[\sum_{k \in K_f} r_k^d\right] + \ln r^{dt}(\xi_f, c_f)$$

• Export Destination Choice
$$I_f^{dt} = 1$$
 if $X_f^{dt} \psi + \delta I_f^{dt-1} + \eta_f \ge \varepsilon_f^{dt}$

= 0 otherwise.

Empirical Model of Export Participation

• Three - dimensional firm heterogeneity $(\xi_f, c_f, \eta_f) \sim N(0, \Sigma_f)$

• Results:

	TABLE 10Posterior distribution of	Σ_f
	Mean	Standard Dev
$Var(\xi_f)$	3.687	(0.613)
$Var(c_f)$	0.341	(0.129)
$Var(\eta_f)$	0.136	(0.024)
$Cov(\xi_f, c_f)$	0.795	(0.129)
$Cov(\xi_f, \eta_f)$	0.099	(0.046)
$Cov(c_f, \eta_f)$	0.012	(0.012)

- Demand heterogeneity (market shares) much larger than cost heterogeneity
- Covariance demand and cost implies high-cost firms have high price (quality)
- Heterogeneity in fixed cost main determinant of number of destinations

Endogenous Heterogeneity – Firm Investment

- Common element in all this literature heterogeneity in productivity, demand, entry cost is exogenous to the firm
- Firms make investments to affect their performance
 - Demand invest to build customer base
 - develop new products, improve quality
 - Advertise, marketing expenses
 - Improve service quality
 - Production
 - Invest in innovation lower production costs, develop new products.
 - Integrate new technology
 - Learning by doing
- Implication Firm characteristics (observed and unobserved) evolve endogenously as firm's make investments. Fundamentally a dynamic process.

Dynamic Investment – Learning about Demand

- Foster, Haltiwanger, Syverson (Economica, 2016)
- Use 11 homogenous manufacturing products
 - new firms are smaller than older firms
 - no differences in (average) TFPQ.
- Two new components
 - Modify the demand curve to depend on age and past sales (and current price)
 - Specify the choice of output to maximize present value of the firm.

Implication – output expansion raises demand and profits in futureEmpirical model: demand curve, Euler equation for output choice.Finding: Significant effect of past sales, no effect for ageConclusion: "Demand Accumulation by Doing" is present.

Dynamic Investment – R&D

- R&D investment current expenditure, future impact on profits
 - Developing new products (demand)
 - Improving technical efficiency (supply)
- Addition to the model productivity evolution, decision rule for R&D

Aw, Roberts, and Xu (AER, 2011)

 $\omega_{it+1} = g(\omega_{it}, rd_{it}, e_{it}) + \varepsilon_{it+1}$

Doraszelski and Jaumandreu (Restud, 2013)

 $\omega_{it+1} = g(\omega_{it}, rd_{it}) + \varepsilon_{it+1}$

Peters, Roberts, Vuong, and Fryges (Rand Journal, 2017)

 $\omega_{it+1} = g(\omega_{it}, d_{it+1}, z_{it+1}) + \varepsilon_{it+1}$

Maican, Orth, Roberts, Vuong (JEEA, 2023)

$$\omega_{it+1}^m = g^m(\omega_{it}, rd_{it}) + \varepsilon_{it+1}$$

Captures persistence in productivity, contribution of R&D/innovation, uncertainty of future ω

Dynamic Returns to R&D – Change in Firm Value

• Firm's value function with state $s_{jt} = (k_{jt}, \omega_{jt}, \mu_{jt})$:

$$V(s_{jt}) = \pi(s_{jt}) + \max\{E_t V(s_{jt+1}|s_{jt}, rd_{jt} = 0), \\ \max_{rd>0} [E_t V(s_{jt+1}|s_{jt}, rd_{jt}) - C_I(rd_{jt}, v_{jt}, I(rd_{jt-1}))]\}$$

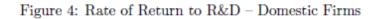
Expected future firm value conditional on R&D choice:

$$E_t V(s_{jt+1}) = \beta \int_{\xi} \int_{\nu} V(k, g^{\omega}(\omega, rd, \xi), g^{\mu}(\mu, rd, \nu)) d\xi d\nu$$

Expected Payoff to R&D Investment

• The expected benefit of investing in R&D is

 $\Delta EV(s_{jt}) = E_t V(s_{jt+1}|s_{jt}, rd_{jt}) - E_t V(s_{jt+1}|s_{jt}, rd_{jt} = 0)$


• Extensive margin: Firm chooses rd > 0 if:

$$\Delta EV(s_{jt}) \geq C_I(rd_{jt}, v_{jt}, I(rd_{jt-1}))$$

• Intensive margin: The optimal amount of R&D spending satisfies:

$$\frac{\partial V(s_{jt})}{\partial rd_{jt}} = 0$$

Extensive Margin – German Manufacturing Firms

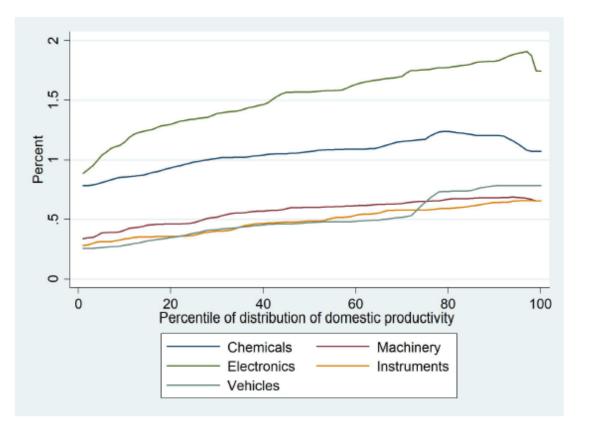
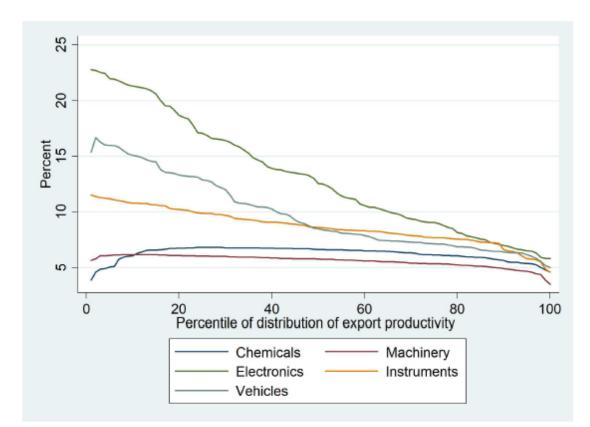



Figure 5: Rate of Return to R&D – Exporting Firms

Source: Peters, Roberts, Vuong, Research Policy 2022

Concluding Thoughts

- Data driven research area
 - Access to comprehensive firm/plant surveys or censuses whole size distribution, dynamic patterns of entry, growth, exit
- Heterogeneity in firm performance (within industry) does reflect a diverse set of underlying factors – technology, demand, market power.

Areas for future thought

- Relative importance of these sources differs by industry, country, time. Why?
- IO perspective. Missing why industries differ. John Sutton (1991, 1998) developed distinction between exogenous and endogenous sunk cost industries
- Firm Investments advertising, R&D, capital are endogenous choices that affect firm performance and dynamics.